[Total No. of Questions - 33] [Total No. of Printed Pages - 4]

DEC-23-0066

BP-203 T (Biochemistry)

Time: 3 Hours		
	B.Pharm-2nd (PCI)	
Max.		
Max. Marks : 75		
σì		

Note: Section A is Compulsory, attempt all questions in this Seven questions section. Attempt

enzyme is required for oxidative decarboxylation of	C. A & B both D. None of above	A L-isomer B. D-isomer	Amino acids in proteins are usually in:	(Answer ALL the questions)	SECTION-A (20×1=20)		Seven questions from Section C.	Attended in Time suppliers from Section B and
				9.			œ	
Ö	ဂ	œ	P	ATF	ဂ	₽	Tran	9
D. All of the above	 C. Hydrolysed with positive Δ 	B. Energy link between anabo	A Nucleotide	9. ATP is	C. Both A and B	A Carnitine shuttle E	8. Transports free fatty acid from o	

'n

pyruvic acid.

A. PDH

ß

Pyruvate kinase

10. For endergonic reactions ΔG is

GADPH

Enolase

Amino acids in prot

ω

The successive nucleotides in DNA are linked through

11. In nucleotide nitrogenous base is linked with ribose by

Slightly negative

Negative

O-glycosidic bond Phosphodiesterase

A. N-glycosidic bond Peptide bond

C. Zero

Positive

Myocardial infarction can be diagnosed by isoenzyme of

A. LDH

C. SGOT

'n

Lysine

Tyrosine

Alanine

C. Glucagon A Insulin glucose:

Glycine

.....is an essential amino acid.

Both in A & B

Ö

Membrane

13 Following hormone is not involved in the regulation of blood

Epinephrine

Oxytocin

[P.T.O.]

Ö

ACP ALP

Mitochondria

Cytosol

Synthesis of fatty acid takes place in

C. Glycosidic

A. Phosphodiester

œ

Amide

Ö

None of these

.....bridge.

	2		BP-203 1
ç,	Bile acid is:		
	A. Cholesterol derivative	œ	Carbohydrate derivative
	 C. Amino acid derivative 	Ò	Nucleotide derivative
.~	Coenzyme derived from vitamin B3 is	n BS	is
	A NAD	œ	NADP
	C. A & B both	Ò	FAD
μ	Transports free fatty acid from cytosol to mitochondria.	cyto	sol to mitochondria.
	A Carnitine shuttle	Ŗ	Citrate shuttle
	C. Both A and B	ņ	Neither A nor B
٠	ATP is		
	A Nucleotide		
	 B. Energy link between anabolism and catabolism 	olisr	n and catabolism
	C Undrokend with positive AC	5	

- 14. The successive nucleotides in DNA are linked throughbridge.
- Phosphodiester

B. Amide

- Glycosidic
- D. None of these
- released from nucleic acid breakdown. Salvage Ö œ, De novo

15.pathway recycle the free bases and nucleoside

Both A & B

16. Glycogen is of glucose :

- None of these
- Oligosaccharide

Homo polysaccharide

- B. Hetero polysaccharide
- Ö Disaccharide
- How many NADH molecules are generated in complete oxidation of one molecule of Acetyl -CoA
- œ.

Ö

ယ

referred to as:

The DNA strand which does not participate in transcription is

- Non -coding strand
- œ Sense strand
- Coding strand
- Ö All of these
- æ Hemi -aceta 1 formation

19. Formation of cyclic structure of α -D glucose is an example of:

- Nucleophillic addition

Acetal formation

Ō

Both (a) and (b)

- Storage material of fuel in plant is :
- Starch

Glucose

- Glycogen
- Ö Galactose

BP-203 T

SECTION-B

(2×10=20)

(Long Answer any TWO questions out of three)

- 21. Describe various steps of de nove synthesis of palmitic acid Explain the role of citrate shuttle.
- 22. Describe the reactions of citric acid cycle and comment on its anapleoratic nature.
- 23. Give outline for gluconeogenesis. Explain its biochemical significance.

SECTION-C

(Short note Answer any SEVEN questions out of nine)

- 24. Describe biosynthesis of catecholamines from tyrosine catabolism.
- Differentiate between oxidative phosphorylation and substrate level phosphorylation.
- Explain the mechanism of electron transport chain.
- 27. Discuss the biochemical causes of jaundice
- 28. Compare glycolysis and gluconeogenesis
- 29. Name the four level of protein structure. Briefly explain secondary structure of protein.
- Describe reactions of urea cycle.
- Describe the synthesis and biological significance of dopamine.
- 32. Explain various types of stereoisomerism present in monosaccharides.
- Describe reactions of Kreb-Henseleit cycle.